“相较于传统模型,人工智能和深度学习算法,为解决大数据分析和高性能并行运算等难题,提供了新的契机。”
近日,记者从中国农科院获悉,一种基于人工智能和深度学习算法的新模式,可以实现育种大数据的高效整合与利用。该研究由中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出,相关研究成果发表于《分子植物》(Molecular Plant)上。
随着生物技术的发展,全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
其中,统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。然而,传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。相较于传统模型,人工智能和深度学习算法,为解决大数据分析和高性能并行运算等难题,提供了新的契机,深度学习算法的优化,将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物为对象,将这3种作物的4种不同维度的群体数据作为测试材料,通过创新深度学习算法框架,开发了全基因组选择新方法。与其他主流预测方法相比,该方法可以利用多组学数据,开展全基因组预测;算法设计可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现,与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。